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Molecular crowding occurs when the density of interacting molecules in some reaction system is sufficient
to create deviations from traditional mass-action models of chemistry in diffusive systems. While there is a
great deal of theory on the influence of molecular crowding on biochemistry in vivo, the effects are highly
dependent on specific assumptions about the shapes, volumes, and diffusion properties of the components of an
individual system and are thus difficult to predict from first principles. In this study, we use lattice Monte Carlo
simulations to examine the effects on a reaction system for two limiting cases of the diffusion behavior of inert
crowding agents. In cells, inert molecules might diffuse throughout a solute along with the reactant species by
passive diffusion or may be anchored at fixed positions within the solute. We investigate the relative contri-
butions of the two models to crowding effects by examining moving inert particles versus stationery inert
particles on the kinetics of a heterodimer assembly system. The two models of inert crowding agents resulted
in highly divergent effects on the reactant system. Stationary particles exhibited a bimodal response in the
reaction rate curve that was a function of copy number and spatial arrangement and which accelerated the
process at conditions not unlike those found in cellular environments. On the other hand, moving inert particles
created a well mixed background that had no effect on the reaction process even under extremely compacted
conditions. These results may have applications in developing more realistic simulations of reaction chemistry
in crowded environments such as living cells.
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INTRODUCTION

Cell environments are known to be complex, heteroge-
neous distributions of multitudes of chemical species. Com-
puter models of these systems must necessarily make many
simplifying assumptions, typically carried over from well-
established models of solution chemistry. These commonly
include the implicit assumptions that reaction systems act in
a dilute, well mixed media consisting of only the reactants to
the particular reaction under study. The standard model for
such systems is a system of ordinary differential equations
derived from the law of mass action, which assumes an en-
vironment that is homogenous, continuous, and determinis-
tic. Reactions in vivo, however, typically occur under condi-
tions in which other background molecules and stationary
structures occur within a complex, highly constrained geom-
etry �1�. The reactions are the result of discrete collisions
between finite populations of molecules through passive dif-
fusion or a finely orchestrated transport system, and therefore
have an inherently stochastic component. There are now
many examples of reaction systems in which this stochastic
behavior appears to be essential to biological function
�28,2,3�.

The true cellular environment is densely packed with a
variety of macromolecules, on the order of 50–400 mg/ml,
suggesting that 10%–40% of the total cell volume is occu-
pied by these molecules �5–8�. Though these surrounding
molecules and structures are not formally considered reac-
tants for most of the chemistry occurring in the cell, they can

nonetheless have sizable effects on the thermodynamics and
kinetics of a broad range of reactions occurring in the cell
�9,1,10�. This phenomenon is referred to as crowding.
Crowding is believed to exert a nonspecific effect on reaction
processes primarily through two mechanisms. It reduces the
reaction space available to the reacting species, producing an
entropic effect called the excluded volume effect that tends
to enhance binding events. Conversely, it impedes molecular
diffusion, which can reduce the rate at which the reactants
meet. These opposing effects can alter reaction rates and
equilibria as compared with a dilute well mixed media �11�.
Where a process is diffusion limited, crowding will tend to
reduce the association rate and impede the reaction. Reac-
tions limited by transition times for changes in state are
likely to be promoted. An example of the latter process is
provided by recent molecular dynamics studies of the bind-
ing of Cdc42 to CBD, where a significant amount of folding
appears to be necessary after initial binding to generate a
fully bound dimer �12�. Most biological processes occurring
in vivo are influenced by both effects to some degree and
either may dominate a given reaction system depending on
the nature and concentration of the crowding agent. In the
extreme the binding rate is dominated by the encounter rate
and at high enough concentrations will fall even for transi-
tion state limited reactions.

Experiments �13–16� and theoretical models �17–21� in-
dicate that the dominating effect of crowding on a reaction
process depends strongly on the size, shape, and arrangement
of the surrounding obstacles. It is more pronounced for larger
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species than for smaller ones. Smaller molecules can more
easily pass between obstacles and so the volume available to
them is essentially the total unoccupied volume of the sys-
tem. But for larger molecules the space between objects may
not be sufficient to pass through and this volume becomes
unavailable, or excluded, even though it is unoccupied.
Crowding agents have been used experimentally to mimic
background molecules. Typically these are inert particles that
move throughout the solution by passive diffusion. However,
this use of diffusing crowding agents may not be an appro-
priate model when considering the crowding effects pro-
duced by essentially stationary obstacles, such as intracellu-
lar compartments, cytoskeleton networks, and other large
complexes. Here, we examine the effect of moving versus
stationary obstacles on the association rate constants for het-
erodimer formations. We accomplish this through two-
dimensional, lattice-based, Monte Carlo simulations. Simu-
lations provide an especially robust framework for this
application since the spatial environment can be incorporated
directly into the model and discrete interactions can be ob-
served and tracked and our Monte Carlo model can capture
the inherently stochastic nature of molecular interactions. We
examine these conditions, relevant to both in vivo and
in vitro environments, and elucidate their differences.

MODEL DESCRIPTION

We utilize a variation of a Monte Carlo model called
LaBB �lattice based biological� Monte Carlo, developed pre-
viously to simulate molecular assembly of biopolymers in a
crowded environment �22,23�. Binding in this model is based
on the spatiotemporal arrangement of particles on the lattice.
Conformational changes associated with dimer binding �12�,
but more related to molecular structure, are not implemented

in this model. As seen in Fig. 1�a�, two different types of
monomers, A and B, must be located immediately adjacent to
one another on the lattice with their binding sites correctly
aligned for a heterodimer, C, to form. C can unbind into its
constituent A and B parts. Dimers’ and monomers’ abilities
to move and rotate about the lattice are dependent on a pre-
scribed diffusion coefficient and the occupancy of the sur-
rounding sites. The diffusion coefficient determines the per-
centage of particles that will be given a chance to move in a
single iteration, provided their movement is not impeded by
an adjacent particle. As shown in Figs. 1�b�–1�d�, the solu-
tion progresses from initial conditions where A and B mono-
mers are placed randomly on a lattice, to a condition where
C dimers are being formed, and finally to an equilibrium
condition where the molecular distributions are relatively
stationary over time.

We can evaluate the quantitative impact of different
crowding models on the reaction progress by measuring the
effects of each model on the effective rate constants of the
system. The method for extracting these from the Monte
Carlo model is derived from the chemical rate equations for
the continuum model of the process in the absence of crowd-
ing effects. Using the law of mass action, the process is
described by the following systems of ordinary differential
equations �ODEs�:

d�A�
dt

= − �A��B�k+ + �C�k−,

d�B�
dt

= − �A��B�k+ + �C�k−,

FIG. 1. Schematic of the
lattice-based Monte Carlo model.
�a� Illustration of the binding
model. Two particles, A and B,
must be adjacent on the lattice and
present compatible binding sites
�side 1� to one another to allow
binding to form the complex C.
�b� Initial configuration for a
simulation with only A and B par-
ticles present. �c� A and B par-
ticles begin moving and rotating
on the lattice according to a
Brownian motion model. They
meet and begin to form C dimers.
�d� A steady state solution is
reached when their average con-
centrations remain constant.
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d�C�
dt

= �A��B�k+ − �C�k−. �1�

Here k+ is the binding rate constant and k− is the unbinding
rate constant which are typically determined experimentally.
The square brackets denote the total concentration of mol-
ecules of that particular type. The ODE model gives a con-
tinuous, deterministic solution of average behavior for a
large, spatially uniform distribution of particles. It cannot,
though, account for inhomogeneous conditions or discrete
interactions. By numerical differentiation of Eq. �1� and con-
sidering binding and unbinding events as uncoupled, esti-
mates for the rate constants can be obtained from the distri-
bution of a single species over time,

k+ =
�A�t�� − �A�t + �t��

�A��B��t
,

k− =
�A�t � + �t�� − �A�t � ��

�C��t
. �2�

Equation �2� can also be derived from a stochastic formula-
tion of the chemical reaction �24� where k+�t is defined as
the average probability for a particular pair of A and B mol-
ecules to bind, k−�t is the average probability for a particular
dimer to unbind, and the quantity of molecules are expressed
as integer numbers rather than concentrations. Considering
�t as one iteration in the model, k− and k+ are synonymous
with the binding and unbinding probability, respectively.

Using Eq. �2� and the Monte Carlo model to track mol-
ecules over the course of a simulation, we can calculate the
average rates for a single reaction trajectory and derive rate
constants from the average of many trajectories. We can then
compare the Monte Carlo model under different assumptions
about crowding agents with the classical ODE model to
study how crowding influences molecular assembly.

In the lattice model, the k+ value is not explicit as implied
by Eq. �1� but rather is a function of spatial conditions on the
lattice. It is the product of two probabilities; that A and B
monomers are adjacent to one another and that their binding
sites are correctly oriented. Each monomer is considered to
be four sided, one of which is a binding site. Therefore the
probability that two monomers’ binding sites are correctly
aligned has a constant value of 1 /16th. Any changes in the k+

values obtained with the model can then be attributed to the
influence of crowding on the relative positions of A and B
monomers on the lattice. Crowding is assumed here to have
little influence on unbinding events and so k− is specified
explicitly in the model and is independent of the arrangement
of particles on the lattice.

We first compare the Monte Carlo and ODE models at
low concentrations of molecules, without inert particles,
where spatial conditions are expected to have little effect on
equilibrium conditions. This validates the Monte Carlo
model and also provides a baseline for the other cases. We
then consider three scenarios that have relevance in cellular
environments but may deviate from the assumptions made
by the ODE model. In the first scenario, the initial concen-
tration of A and B monomers is progressively increased. This

represents situations in which large numbers of reacting spe-
cies localize in the cell to accomplish specific functions, such
as is seen during cytokenesis and mitosis. In the second sce-
nario, the concentration of A and B monomers are main-
tained constant while stationary inert particles are added and
progressively increased. This mimics the nonspecific crowd-
ing effects of stationary structures found in vivo that do not
actively participate in the reaction process, such as intracel-
lular compartments, cytoskeleton networks or immobilized
proteins. The third scenario is analogous to the second except
the inert particles are permitted to move, imitating the non-
specific crowding effects of background molecules present in
the cytosol that diffuse along with the reacting species but
are not directly involved in the reaction process.

RESULTS

We performed a series of simulations of the crowding
models discussed above, varying the concentrations and es-
timating the rate constants for each. The model tracks dis-
crete molecules and so the units of forward rates are per
monomer per time step and of backward rates are per time
step. These constants were then applied to the ODE model
with the same initial concentrations and Eqs. �1� were nu-
merically integrated to provide a comparison to a continuum
model with the same effective rates. Unless otherwise noted,
any Monte Carlo data presented are the mean from five
simulations performed for 20 000 iterations each on a 100
�100 lattice with periodic boundary condition. The reverse
rate was fixed to 0.01 in all simulations. Using Eq. �2�, the k−

values were derived from the model for all cases discussed
here and were consistently found to be 0.01, within a stan-
dard deviation three orders of magnitude lower than the re-
verse rate. We therefore do not discuss the reverse rates fur-
ther below.

To compare the Monte Carlo model and the ODE model,
we first ran a baseline Monte Carlo simulation of 500 A and
B particles until equilibrium and calculated the rate constants
as described above. The mean k+ value derived from the
Monte Carlo model was 2.55�10−5. For comparison, we
then varied concentrations of A and B monomers concur-
rently and independently. Figure 2 shows the results for two
different initial conditions. Figures 2�a� and 2�b� compare
results for 250 A and B monomers each at the initial time
step. Figures 2�c� and 2�d� are the results using 100 A mono-
mers and 400 B monomers. As can be observed in Fig. 2, the
inferred rate constants are invariant across starting conditions
at these low concentrations. Several combinations of diffu-
sion rates were tested, yielding the same results at steady
state. For the cases shown here all of the A particles are
given a chance to move every iteration while only one-half
of the B particles and one-fourth of the C particles are given
the chance.

To examine the effect of the species concentrations on
dimer formation, the initial total number of A and B mono-
mers was progressively increased from 100 to 7000, with
equal amounts of A and B monomers used in each simula-
tion. Figure 3 plots the inferred forward rate constants as a
function of concentration for these experiments. This experi-
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ment and the others in this section were run in two variants:
one giving a distinct diffusion rate to each species �Fig. 3�a��
and the other using the same diffusion rate for all diffusing
species �Fig. 3�b��. Up to 2000 monomers, the rate remains
approximately constant in either variant. The rate then in-
creases approximately linearly with increasing initial mono-
mer concentration �large dashed line, Fig. 3�a��. At 7000 ini-
tial monomers, the effective forward rate is 14% higher than
that observed in low-concentration conditions.

We next examined the effect of stationary obstacles on
molecular assembly by using a constant initial concentration
of 1000 monomers �500 A and 500 B� with the same diffu-
sion coefficients as previously stated while increasing the
number of inert particles incrementally from 0 to 7000. Inert
particles were positioned randomly on the grid at the begin-
ning of each simulation and remained in this initial configu-
ration throughout. Up to 2500 inert particles, or 3500 initial
particles, counting the A and B monomers, the rates closely
track those seen when increasing reactant monomer concen-
tration. Between 3500 and 4500 initial particles, the rate in-
crease is more pronounced than that produced with higher
concentrations of reactant particles only. Beyond 4500 initial
particles, there is a steep decline in the rate curve �solid line,
Fig. 3�a��.

We finally allowed the inert particles to diffuse and again
varied inert particle concentration for fixed reactant concen-
trations. The same conditions as the stationary case were
maintained except that the inert particles were allowed to
move with a diffusion coefficient equal to that of the dimers.
Under these conditions, the inferred binding rate remains
nearly constant over the entire range of inert particle concen-
trations �small dashed line, Fig. 3�a��.

DISCUSSION

If only one A and one B particle were randomly placed on
a lattice of n points, the probability, p, for them to be located

next to one another with their binding sites correctly aligned
is

p = k+�t =
1

4�n − 1�
.

This probability gives the expected binding rate in a dilute,
well-mixed environment. With �t equal to 1 and n equal to
10 000, k+ is 2.5�10−5, which is very close to the value
obtained with the model �2.55�10−5� at total particle counts
of below approximately 1000. This approximation however
provides a generally poor model of the rates produced in
crowded conditions. Although how the model fails depends
on the exact assumptions of the crowding model.

Increasing numbers of reactant A and B particles tends to
lead to increased binding rate �large dashed lines in Fig. 3�.
To explain this, in a crowded environment we can reasonably
assume particles remain next to one another for longer peri-
ods of time, allowing adjacent A and B particles more oppor-
tunity to bind. Similarly dimers that unbind are more likely
to rebind. Excluded volume effects cause the reaction to pro-
ceed as if the concentration of the solution were increasing
superlinearly with solvent count because additional particles
both add to the monomer count and displace otherwise free
solution volume. The overall effect is to increase the prob-
ability to stay and is likely the cause for the increases seen
here. A closer look at the binding rate curves shows that the
slope is also increasing with increasing number of particles.
We would expect excluded volume effects to become propor-
tionately more pronounced as less free volume is available.
Both results are consistent with previous predictions of the
effect of crowding on heteroassociations �1�.

In the next case, the number of the A and B monomers is
maintained constant at a relatively low concentration of 500
each and increasing numbers of stationary inert particles are
added incrementally. This case interestingly exhibits a bimo-
dal behavior �solid lines in Fig. 3�, as predicted by Minton

FIG. 3. The effects of crowding on binding rates for A and B
molecules are shown for three cases; no inert particles �large dashed
line�; stationary inert particles �solid line�; and moving inert par-
ticles �small dashed line�; �a� model with differing diffusion rates
between species �1 for A, 0.5 for B, 0.25 for C, 0.25 for inert�.
Increasing A and B molecules cause the binding rate to increase.
Adding stationary inert particles has a bimodal effect and moving
inert particles has little effect on binding rates. �b� Model with a
single diffusion rate of 1 for all species. Experimental conditions
are otherwise the same as in part �a�.

FIG. 2. Time history comparison of �a� Monte Carlo results for
250 A and 250 B monomers and �b� ODE results using the rate
constants derived from the simulation of part �a�. �c� Monte Carlo
results for 100 A and 400 B monomers and �d� ODE results using
the rate constants derived from the simulation of part �c�.
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�25�. Initially the rate increase is consistent with the previous
case. Here again we suggest the increase in the reaction rate
is caused by an excluded volume effect increasing the prob-
ability of reactant monomers to linger near one another. The
effect now proceeds not due to high numbers of reacting
particles but rather obstacles introduced by inert particles.
With the number of pathways available for molecular diffu-
sion reduced, traffic jams occur in the vicinity of the remain-
ing particles, increasing the probability to stay. At 3000 par-
ticles the rate curve deviates from the previous case as the
slope becomes more severe. At its peak the reaction rates
exceed those seen when the entire population was a reacting
species. We hypothesize that this secondary effect proceeds
from inert particles creating more complicated structures that
reactants have greater difficulty escaping. Trapping particles
into subregions, many of which by chance have extremely
high local concentrations would cause an additional increase
in the rate constant beyond that expected from a simpler
conception of excluded volume effects. Figure 4 illustrates
this phenomenon. As more inert particles are added, beyond
4500 initial particles in Fig. 3�a� and 5000 in Fig. 3�b�, the
number of subregions increases as the local grid size de-
creases such that many reactants become completely isolated
from one another. At extremely high concentrations, diffu-
sion becomes impossible and the reaction rate constant nec-
essarily falls.

Crowding agents produce very different effects when they
are free to diffuse �small dashed lines in Fig. 3�. Even at very
high concentrations, no significant change in the reaction rate
constant is seen. Monomers, dimers, and inert particles move
at each iteration so that inert particles do not remain in one
location long enough for traffic jams or isolated regions to
form. In other words a well mixed, relatively homogeneous
environment is maintained independent of inert particle con-
centrations. The binding rate thus remains constant at the

level seen for the other cases at low concentrations. While
the inert particles are likely to produce both excluded volume
and impeded diffusion effects, the two effects would ap-
proximately cancel out under these conditions.

The results are qualitatively similar whether constant or
variant diffusion rates were assumed for the different species,
but some variations bear noting. For scenarios 1 and 3, the
binding rates appear unaffected by the change in diffusion
coefficients. For stationary inert particles though, the nonlin-
ear behavior starts with slightly fewer inert particles and the
maximum binding rate achieved is higher. The standard de-
viations between simulations are relatively large in these re-
gions, though, and the differences between the diffusion
models may therefore reflect random chance. These high de-
viations under conditions of high crowding likely reflect the
importance of the spatial arrangement of the obstacles under
high crowding conditions.

Our model does not explicitly consider conformational
switching of subunits as part of the binding process and the
results might be somewhat different for systems, such as
Cdc42/CBD �12�, in which substantial conformational
change is coupled to binding. We would expect such systems
to be relatively insensitive to the inhibitory effects of crowd-
ing but still sensitive to its excitatory effects, and therefore to
have a comparatively greater rate increase in crowded con-
ditions than is observed in our model. The coupling of bind-
ing and conformational switching was suggested by Caspar
�26� to be a general mechanism for driving assembly reac-
tions, which may explain the empirical observation that
crowding, tends to drive assembly reactions even though
simulation and first principles suggest crowding might in-
hibit them �1�.

CONCLUSION

The effect of the concentrations of reacting species on
assembly processes is well recognized in theory but often
neglected in in vitro experiments and computer models. The
use of a lattice Monte Carlo model allows us to explore the
importance of some model assumptions to the quantitative
effects of crowding on biochemistry. Crowding influences
reaction rates through several distinct mechanisms. Varia-
tions in assumptions about the nature of the crowding agent
allow us to uncouple some of these effects and understand
their individual impacts. The models tested here each corre-
spond with sources of crowding expected in vivo. We find
that the copy number of reacting species and the arrangement
of intracellular structures both play important roles in the
kinetics of assembly processes while background molecules
have little influence. For moving inert particles, the correla-
tion between the concentration of crowding agents and bind-
ing rates found with the model may seem contrary to experi-
mental evidence that supports increasing reaction rates with
increasing inert particle concentration �27,28�. In these cases,
though, the crowding agents and/or the reacting species were
polymers which likely exhibit greatly inhibited diffusion
relative to the independent particles modeled here. No ex-
perimental data comparing stationary versus moving inert

FIG. 4. The final time step from a realization with 4000 total
particles; 3000 inert stationary particles �black squares�, and 1000
moving reacting particles �gray circles and squares�. The moving
particles become trapped in regions where the partitioning of the
stationary inert particles make it difficult to escape. The effect is
compounded as more reacting particles become entrapped causing a
sharp increase in the reaction rate.
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particles over a range of concentrations could be found to
validate or dispute the behavior observed in our simulations
under those conditions. However it is consistent with the
behavior observed in DNA kinase activity when high mo-

lecular weight polymers versus lower molecular weight
crowding agents were added �10�. Our results underscore the
difficulty of developing realistic models of crowding in the
highly heterogeneous environment of the living cell �4�.
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